Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice

نویسندگان

  • Piotr Zabielski
  • Ian R. Lanza
  • Srinivas Gopala
  • Carrie J. Holtz Heppelmann
  • H. Robert Bergen
  • Surendra Dasari
  • K. Sreekumaran Nair
چکیده

Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histochemical And Electron Microscopic Diagnosis Of Mitochondrial Myopathy: The First Case Report From Iran

  Muscle tissue, skeletal muscle as well as cardiac muscle, is commonly affected in mitochondrial disorders. One explanation for this observation is that muscle tissue has a high-energy demand and therefore is more sensitive to a deficiency of mitochondrial energy production than some other tissues. In mitochondrial disorders, skeletal muscle tissue may be affected primarily by defective respi...

متن کامل

The Effect of Six Weeks of Endurance Training on Mitochondrial Level of OPA-1 Quadriceps in Streptozotocin-induced Diabetic Rats

Introduction: Mitochondrial dynamic disorders are attributed to many diseases such as diabetes. MFN2 and OPA-1 proteins are the main regulators of fusion, and DRP1 is the essential protein regulating mitochondrial fission. Increasing or decreasing the expression of relevant genes will cause an imbalance between these two processes. This study evaluated the effect of six weeks of aerobic trainin...

متن کامل

Responses of Muscle Mitochondrial Function to Physical Activity: A Literature Review

Skeletal muscles play an active role in regulating the metabolic homeostasis through their ability for relating to adipose tissue and endocrine hormones. Contraction of the skeletal muscle leads to increased release of several myokines, such as irisin, which is able to interact with the adipose tissue. Physical activity promotes the irisin mechanism by augmenting the peroxisomes (PGC1-α) in the...

متن کامل

Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.

Mitochondrial dysfunction in skeletal muscle has been implicated in the development of type 2 diabetes. However, whether these changes are a cause or a consequence of insulin resistance is not clear. We investigated the structure and function of muscle mitochondria during the development of insulin resistance and progression to diabetes in mice fed a high-fat, high-sucrose diet. Although 1 mont...

متن کامل

اثر محافظتی نانوسریا در جلوگیری از آسیب میتوکندریایی در جنین موش های سوری دیابتی شده با استرپتوزوتوسین

Background and purpose: Gestational diabetes is known as increasing blood glucose level for the first time during pregnancy. Mitochondrial damage and oxidative stress are the most important factors in the development of diabetic complications. Cerium nanoparticles have antioxidant properties. In this study we examined the protective effect of nanoceria in preventing mitochondrial damage induced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2016